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Figure 1: We propose music-aware virtual assistants, ones that more seamlessly integrate spoken notifcations with a user’s 
music. Given a user’s music and notifcation text, our system inserts a musical notifcation by (1) synthesizing that text as a 
singing voice with a generated melody that agrees with both the surrounding musical context and the text, and (2) temporarily 
replacing the original vocals with the musical notifcation. 

ABSTRACT 
We propose a system for modifying spoken notifcations in a man-
ner that is sensitive to the music a user is listening to. Spoken 
notifcations provide convenient access to rich information without 
the need for a screen. Virtual assistants see prevalent use in hands-
free settings such as driving or exercising, activities where users 
also regularly enjoy listening to music. In such settings, virtual 
assistants will temporarily mute a user’s music to improve intelligi-
bility. However, users may perceive these interruptions as intrusive, 
negatively impacting their music-listening experience. To address 
this challenge, we propose the concept of music-aware virtual assis-
tants, where speech notifcations are modifed to resemble a voice 
singing in harmony with the user’s music. We contribute a system 
that processes user music and notifcation text to produce a blended 
mix, replacing original song lyrics with the notifcation content. 
In a user study comparing musical assistants to standard virtual 
assistants, participants expressed that musical assistants ft better 
with music, reduced intrusiveness, and provided a more delightful 
listening experience overall. 
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1 INTRODUCTION 
Virtual voice assistants, such as Siri and Alexa, are ubiquitous fea-
tures of smart devices including phones, laptops, and speakers. 
Given a text notifcation from an application, these systems use 
text-to-speech (TTS) to dictate a spoken notifcation to inform users 
of new information. Virtual assistants are especially benefcial in 
scenarios where users are engaged in other tasks such as walking, 
exercising, shopping, driving, or browsing. While driving, for ex-
ample, users can keep their eyes on the road while receiving timely 
audio navigation instructions. 

Incidentally, these routine scenarios are also typical moments 
where users listen to music [40]. Listening to music while receiv-
ing spoken notifcations from virtual assistants, however, can be 
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perceived as intrusive. Typically, music and voice instructions are 
combined by temporarily decreasing the volume of the music and 
overlaying the speech. As shown by previous research on inte-
grating ringtones into music [52, 54, 55], users perceive temporary 
musical interruptions as distracting and detrimental to the music-
listening experience. Audio notifcations might mask a user’s fa-
vorite part of a song, or unimportant notifcations unnecessarily 
take attention away from a user’s main task. 

Previous research attempted to solve this by integrating auditory 
notifcations such as ringtones into users’ music through techniques 
such as timbre transfer [54, 55] and harmonic mixing [52]. While 
those techniques improved user experience by decreasing the dis-
ruptiveness of notifcations, they were only designed to work with 
ringtones. Ringtones are short musical compositions tailored to 
notify users of new activity but do not convey the details of that 
activity. In our work, we instead focus on spoken notifcations from 
virtual assistants such as navigation instructions, announcements, 
or messages. Spoken notifcations provide users with more infor-
mation than ringtones, but are more challenging to integrate as 
they are not already musical. 

We propose the novel concept of music-aware virtual assistants 
or musical assistants for short. Our approach blends spoken notifca-
tions from virtual assistants into music. Instead of muting a user’s 
music and overlaying a spoken notifcation, we modify the spo-
ken notifcations so that they resemble someone “singing” them in 
harmony with the song a user is currently listening to. 

To integrate voice messages into music, we contribute a system 
that (1) generates a new musical melody consistent with a user’s 
music and the text notifcation, (2) modifes a spoken notifcation to 
match the new melody, and (3) integrates the resulting musical noti-
fcation into the original song (Figure 1). A signifcant challenge in 
developing such systems is ensuring the intelligibility of the musi-
cal notifcations. Specifcally, we identify two key factors that afect 
the intelligibility of musical notifcations: (1) the compatibility of 
the melodic rhythm and the natural spoken rhythm (prosody) of the 
text transcripts, and (2) the performance of singing voice synthesis 
(SVS) systems. To improve rhythmic compatibility, we frst estimate 
the natural spoken rhythm of the text using TTS and then generate 
a new melody that is close to this rhythm but also compatible with 
the surrounding musical context. We also found that state-of-the-
art SVS systems often produce unintelligible output, even given 
pairs of melody and text with high rhythmic compatibility (such as 
the original melody and lyrics). Accordingly, we propose to modify 
the output of TTS systems to conform to the generated melody 
using signal processing, sacrifcing the naturalness of SVS systems 
in favor of intelligibility, which we argue is more critical for our 
application. We explore speech recognition as a proxy for human 
intelligibility, showing that our TTS-based system achieves higher 
intelligibility than one based on SVS. 

Our goal is to improve users’ music listening experience by 
making notifcations musically aware, thus reducing intrusiveness, 
improving music ft, and making the experience delightful. Our 
approach complements other modes of notifcation presentation, 
as opposed to replacing them. Current types of notifcation pre-
sentations work well for many scenarios, especially high-urgency 
ones where immediate attention is needed. Our approach targets 
scenarios when low to medium-urgency messages are delivered in 

casual listening situations, such as receiving a reminder during an 
exercise session; or receiving a meeting invitation while going for 
a walk. During these tasks, our approach provides an unobtrusive 
and lighthearted alternative to turning notifcations of. 

Existing pitch correction tools such as Autotune[48] can also 
make non-musical sounds feel musical by adjusting the pitch to 
the closest musical pitch. However, our approach generates a new 
melody based on the constraints of both user music context (tempo, 
harmony) and text context (prosody, syllables), inpainting a new 
melody that stylistically fts the current song and the message, 
resulting in better musical integration and better intelligibility. 

In a user study comparing our music-aware virtual assistant to 
the standard practice of combining spoken notifcations and volume 
reductions, end users rated our approach as being a better ft with 
music, less intrusive, and more delightful. Participants expressed 
that they value clarity, music continuity, and context-sensitivity in 
scenarios where spoken notifcations coexist with music-listening, 
and generally endorsed music being altered for important notif-
cations. While participants were able to transcribe notifcations in 
both settings with comparable levels of accuracy (suggesting high 
intelligibility of our method), participants reported that the seam-
less quality of our method required more cognitive efort from the 
user. This falls in line with prior research on musically-integrated 
ringtones [52], where the most subtle settings required more cogni-
tive efort and is therefore less preferred than a setting that struck 
a balance in saliency and integration. Despite concerns about the 
naturalness of the singing, participants saw the strong potential 
in our novel approach, which is the frst that aims at providing 
a complement to conventional spoken voice messages towards 
well-integrated, melodic ones. Especially in instances where the 
user is engaged in activities without a digital screen, the musical 
assistant system can subtly provide timely information without 
substantially disrupting the music-listening experience, ofering a 
delightful alternative to constant interruptions or silencing notifca-
tions. Examples of our approach can be found at https://augmented-
perception.org/publications/2024-singing-assistants.html. 

In summary, we make the following contributions: 
• A system that automatically synthesizes and integrates in-
telligible musical notifcations into pop songs. 

• A novel method for generating new melodies in the middle 
of pop songs, with precise rhythmic control. 

• Results and insights from a user study (� = 12) with end 
users, showing that our approach is perceived to be less 
intrusive, more musically ft, and more delightful. 

2 RELATED WORK 
Our work builds on prior research in auditory displays, speech and 
singing voice intelligibility, and music generation. 

2.1 Virtual assistants 
Virtual assistants (or personal assistants, voice-enabled assistants, 
etc. [50]) enable natural, conversation-like, interactions with users 
by leveraging diferent components such as speech recognition, 
task execution, and synthesizing a speech response output. They 
support users in a variety of tasks, such as while cooking, web 
search, communication, and controlling IoT devices (e. g., turning 
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lights on and of) [1]. They provide users with on-demand mes-
sages, information and notifcations, and are particularly useful for 
enabling hands-free interactions [11]. In our work, we concentrate 
on a fundamental aspect of virtual assistants: synthesizing speech 
outputs to communicate with users. Our goal is to enable virtual as-
sistants to present messages in a less obtrusive manner by blending 
them with background music users are currently listening to. 

2.2 Music and auditory displays 
Auditory displays, such as auditory icons and earcons [5], com-
municate information through sound. Typical examples include 
ringtones or short cues to indicate the availability of new messages. 
They have been used to improve the efectiveness of user interfaces, 
e. g., by combining them with graphical interfaces [23, 39]. One 
goal of auditory displays is to present information unobtrusively 
to users, for example by integrating them with the music users 
currently listen to. Jung and Butz [7, 30], for example, explored 
pre-composing soundscapes where certain musical elements are 
optional and will not strongly afect the music listening experi-
ence when removed, enabling these optional music snippets to be 
included as an indicator of notifcation. Ananthabhotla and Par-
adiso [2] embedded notifcations by allowing users to listen to their 
own music library, and substituting auditory notifcations with 
arbitrary efects to the original audio. They rely on the user’s fa-
miliarity with the original music to be efective. Yang et al. [54, 55] 
apply timbre transfer on popular notifcation sounds to make them 
less intrusive. Wang et al. [52] utilized techniques from music in-
formation retrieval to modify ringtone notifcations for automated 
harmonic blends. All those works focus on short ringtones, whereas 
we focus on voice messages. 

Other work adjusts the music users listen to, for example for 
navigation. Soundsride adapts the user’s music according to the 
afordances of statuses on the road (e. g., synchronizing the start of a 
musical section with the exit of a tunnel) [31]. Navigatone separates 
the individual elements of a music composition and spatializes some 
components to seamlessly guide the user [25]. 

Despite the widespread and concurrent usage of virtual assistants 
and music streaming, to the best of our knowledge, we are the frst 
to integrate speech-based auditory displays into music. 

2.3 Speech and singing voice synthesis 
Recent advancements in machine learning have enabled TTS sys-
tems that can synthesize speech with high fdelity, intelligibility, 
and speaker diversity [19, 32, 34, 41, 42, 45, 53]. Similar methods 
have been applied to singing voice synthesis (SVS) [35, 36], though 
researchers have noted a scarcity of training data as an obstacle to 
intelligible SVS [13]. Singing voice conversion (SVC) systems are 
increasingly popular in music production [22] and can convert one 
singing voice to another with high intelligibility [33, 47], but they 
require human singing as input and accordingly are not practical 
for musical notifcations. Even human singing can be hard to under-
stand [10, 21], posing an obstacle to our setting where intelligibility 
is of critical importance. To synthesize singing with higher intelligi-
bility than existing SVS systems, our system modifes outputs from 
TTS systems to sound more musical (at the cost of naturalness). 

2.4 Prosody and intelligibility 
Previous research has found that intelligibility is generally imper-
fect for sung lyrics and varies across genres. Listener transcription 
accuracy can be as low as 48 percent for classical music and an 
average of 72 percent for all genres explored [10]. Johnson et al. 
[29] confrmed several factors of music composition that improve 
intelligibility, such as matching the rhythm of music composition 
with the rhythm of speech prosody, only assigning one musical 
note to a syllable as opposed to multiple (melismatic singing), and 
using more commonly used words. Similarly, Collister and Huron 
compared sung and spoken words and showed that spoken words 
are better understood by listeners [9]. 

One major factor for intelligibility in speech is prosody, i. e., the 
acoustic parameters of speech that shape the sound qualities beyond 
the textual context. For instance, it is hard to understand the speech 
of someone who speaks monotonously and stretches syllables to be 
the same duration. While the exact defnition of prosody may difer 
between felds, Cutler and Ladd provide a concrete defnition of 
prosody as “those phenomena that involve the acoustic parameters 
of pitch, duration, and intensity [12].” Research on the speech-to-
song illusion shows that these acoustic features in speech have 
equivalents in music composition and can be interpreted as musical 
when being listened to repeatedly [15]. 

Building on research in music intelligibility, we aim to make 
the outputs of musical voice assistants intelligible through the 
guidelines proposed by previous researchers, including assigning 
messages to a melody that matches the prosody of the original 
speech. To achieve this, we build on work done in symbolic music 
generation to automatically compose melodies that are suitable for 
the input text. 

2.5 Music generation 
A number of recent works explore unconditional music generation 
by modeling symbolic music representations with autoregressive 
language models (LMs) [17, 28, 43, 46]. Our goal is not uncondi-
tional generation, but rather to generate melodies conditioned on 
input musical context (chords, beats) alongside target “lyrics” (the 
text content of the musical notifcation). Yu et al. [56] and Choi et 
al. [8] explore melody generation based on input lyrics and chords, 
respectively, but neither method can support both constraints si-
multaneously. Thickstun et al. [49] propose an LM-based symbolic 
music generation model that can both generate unconditionally 
and also accompany, i. e., generate music for one instrument to be 
played simultaneously with music from another. Here we extend 
this approach to be capable of generating melody conditioned on 
both chords from the music that the user is listening to, as well as 
the natural prosody of the target text. 

3 MUSIC-AWARE VIRTUAL ASSISTANTS 
We contribute a system that takes in notifcation text and user mu-
sic as input and outputs musical notifcations, illustrated in Figure 2. 
This output can then be integrated into user music by replacing any 
existing vocals for a blended delivery of information. We contribute 
two core components that improve the outputs of musical assistant 
systems, which enable our overall system. Specifcally, we con-
tribute (1) a novel method to generate new melodies by adjusting a 
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Figure 2: Our system takes user music and notifcation text as input, pre-processes them to extract information, and uses this 
information to generate new melodies and melodic notifcations that can then be integrated into the current song. 

music transformer to account for music and text prosody, and (2) a 
module that can automatically segment the syllables in spoken text 
and map each syllable to a melody note. Our main goal is to im-
prove user experience by ensuring that the output voice messages 
are intelligible and blend well with the current song, minimizing 
intrusiveness and interruptions to music listening. 

3.1 Input and pre-processing 
Our method requires the pre-processing of user music and noti-
fcation text to extract essential information required for melody 
generation and voice modifcation. 

3.1.1 Symbolic music information. Our method assumes access 
to a symbolic representation of the listener’s music, specifcally, 
the melody notes, chords (harmony), and the click track (beats 
and tempo). Currently, we retrieve this information for specifc 
pop songs from Hooktheory’s TheoryTab database, which contains 
manually labeled annotations for nearly 50k songs. For songs that 
are not documented in this database, it is possible to automati-
cally transcribe (predict) this type of symbolic music information 
from audio [16, 18, 58], albeit with less precision. We focus on the 
retrieval setting primarily because we aim to create musical notif-
cations, rather than music transcription. Additionally, we envision 
that in a real-world implementation of our system, artists could be 
given control over how their music should and shouldn’t be modi-
fed for musical notifcations by providing symbolic information 
and additional usage metadata, as discussed in Section 7. 

3.1.2 Synthesizing the text transcript. A key requirement of our 
approach is that the musical notifcations are intelligible. To achieve 
this, we modify the audio outputs of text-to-speech (TTS) systems 

to create a singing voice synthesis system with high intelligibility. 
From an input text notifcation to our system (e. g., “remember 
to take your meds”), we use an of-the-shelf TTS system [20] to 
synthesize the text as speech audio. Then, we input the speech 
audio and the text transcript to an of-the-shelf forced alignment 
system [59] to estimate the onset time of phonemes in audio. Finally, 
as visualized in Figure 3, we group phonemes into syllables by 
fltering through vowels, ensuring that only one vowel was present 
in each cluster of phonemes, yielding an ascending list of syllable 
timestamps [�1, . . . , �� ]. Here, � is the number of syllables in the 
original text transcript, and �� is the estimated onset time of syllable 
� . To remove initial silence, we shift all timestamps and the audio 
by a constant amount of time, such that �1 = 0. This list of syllable 
timestamps will later be used in both melody generation and voice 
modifcation steps of the system. 

3.2 Generating new melodies 
We contribute a method for generating new melodies that ft with 
both the detected or retrieved musical context, as well as the natural 
spoken rhythm of the notifcation text. The relationship between 
musical melody and language is a complex one [6, 15], and it may 
be the case that there is no suitable part of the original melody 
that fts with the new text. Hence, to produce natural-sounding 
results, we propose to generate melodies with awareness of both 
the musical context and the notifcation text. 

3.2.1 Background: the Anticipatory Music Transformer. Our pro-
posed method is based on the Anticipatory Music Transformer [49], 
a large language model (LM) capable of symbolic music generation. 
Most symbolic music LMs generate notes in a left-to-right fashion, 
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Figure 3: Given a text transcript, our method estimates mu-
sically relevant prosody information by frst synthesizing 
that text as audio with TTS and then estimating onset times 
for each syllable in the audio. To get syllable onset times, 
we frst use an of-the-shelf forced alignment method [59] 
to estimate onset times for individual phonemes in the TTS 
output, and then cluster phonemes into syllables. 

predicting subsequent notes from past ones. However, in our set-
ting, we hope to insert a generated melody into the middle of an 
existing one, necessitating awareness of not only past notes but 
also future ones. The Anticipatory Music Transformer ofers this 
capability of generating in the middle of a musical sequence. 

More formally, a note � is a tuple (�time, �dur., � ins., �pitch), i.e., its 
absolute start time, duration, instrument category, and musical 
pitch. The Anticipatory Music Transformer is a probability distribu-
tion �� (e | c) over a sequence of notes (the events) e = [�� , . . . , �� ], 
given a disjoint sequence of notes (the controls) c = [�� , . . . , �� ]. 

≤ �time ≤ �timeBoth sequences are time-ordered, i.e., �time 
�+1 , and �time .

� � �+1
This setup is meant to facilitate unusually versatile control for 

music generation, allowing for generating notes from any other 
sequence of notes (e.g., generating melody from harmony, or gener-
ating the past from the future). Accordingly, the events and control 
sequences can have arbitrary timings (e.g., they can overlap in time, 
or the controls can come after the events). To make this tractable 
to model, the Anticipatory Music Transformer adopts a factoriza-
tion that allows the model to “anticipate” controls some number of 
seconds � into the future: 

�Ö 
�� (e|c) = �� (�� |e<� , cI� ), where 

�=1 

I� = { � | 1 < � ≤ �, �time < �� 
time + �}.� 

In both this work and the original paper, � = 5 seconds. 
To model this distribution, the Anticipatory Music Transformer 

adopts an autoregressive (left-to-right) “decoder-only” Transformer 
LM [51], similar to the method proposed by Huang et al. [28]. To 
incorporate anticipation, the controls are shifted forward by � sec-
onds and then interleaved with the events in time-order (additional 
details in the original paper), enabling anticipation in a standard 

Transformer LM. After interleaving, the four attributes in each note 
tuple are expanded to three sequence timesteps (instrument and 
pitch are combined into one timestep) and also modeled autoregres-
sively: 

pitch
�� (�� |·) = �� (�time |·)�� (�dur. |�time , ·)�� (� ins., � |�time, �dur. , ·).� � � � � � � 

In the model’s vocabulary, 10000 tokens represent discretized start 
times (10ms intervals up to 100s max), 1000 tokens represent dis-
cretized durations (10ms intervals up to 10s max), and 16512 tokens 
represent the cross product of instrument categories (129) and mu-
sical pitches (128). 

3.2.2 Generating new melodies for a text transcript. In the following, 
we detail how to adapt the Anticipatory Music Transformer to 
generate new melodies for an input text transcript. 

Fine-tuning the model. In our setting, the listener’s musical con-
text consists of three sequences of note tuples comprising the 
melody M, harmony H , and click track C. To adapt the Antic-
ipatory Music Transformer to our particular setting, we fne-tune it 
on a dataset of melody, harmony, and click tracks derived from the 
Hooktheory dataset [18]. Specifcally, for each song in that dataset, 
we pick a random span in the middle of the melody starting at time 
�� and ending at time �� , and fne tune the pre-trained checkpoint 
to model M≥�� ,<�� given inputs M<�� ∪ M≥�� ∪H ∪ C. In other 
words, when generating the melody in the selected span, the model 
will be conditioned on all notes from all instruments in the past, 
as well as all notes from all instruments up to � seconds into the 
future. Accomplishing this with anticipation requires confguring 

′ ′controls c = M≥�� ∪ H≥�� ∪ C, and events e = M<�� ∪H<�� . 

Choosing when to notify. The resulting model is capable of gen-
erating new context-aware melodies at arbitrary locations in time, 
creating a fexible system that could, in theory, generate as soon 
as possible for higher-urgency notifcations, or wait until a more 
appropriate musical moment for lower-urgency notifcations. In 
our experiments, we examine the latter setting (which we envision 
as more appropriate for our system), and adopt a simple policy for 
choosing a musically-appropriate moment: we start at the down-
beat of the third measure, and generate a new melody up to two 
measures in length. Formally, for a song in common time at a tempo

60 60of BPM beats per minute, we select �� = 8 · BPM , and �� = 16 · BPM . 

Generating one note per syllable. Given the fne-tuned model 
�� and target span �� through �� , we can generate a new melody 
ˆ ′ ′ M≥�� ,<�� by sampling from �� (e ≥�� ,<�� | e <�� , c 

′), using the in-
ference algorithm from the Anticipatory Music Transformer [49]. 
Taking inspiration from the fndings of Johnson et al. that melis-
matic singing (i. e., stretching syllables to match a melody) is less 
intelligible [29], we strictly match one syllable to each note to im-
prove intelligibility. To ensure that a sufcient number of notes 
are generated to convey the text transcript, we reject any samples 
where the number of notes is less than the number of syllables. 

3.2.3 Generating with awareness of prosody. It is generally unlikely 
that an arbitrary melody pairs naturally with arbitrary text (see 
Figure 4), even if the number of notes in the melody is equivalent 
to the number of syllables in the text. For example, try singing 
the melody of “Twinkle Twinkle Little Star” with the lyrics of the 



UIST ’24, October 13–16, 2024, Pitsburgh, PA, USA Alexander Wang, David Lindlbauer, and Chris Donahue 

Figure 4: Lef: When mapping a text transcript to an arbitrary melody, the natural rhythm of the text is broken. Stretching 
certain syllables for extended durations and compressing some into a short span of time. Right: The melody is tailored to the 
prosody of the text, minimizing any distortions and maintaining the natural fow of speech (examples provided in supplement 
audio and video). 

“Happy Birthday” song—it starts of reasonable but diverges quickly. 
In preliminary experiments, we found that forcing text to be synthe-
sized to an arbitrary melody (either the original one or a generated 
one) tended to jeopardize intelligibility. 

Here we describe our procedure for generating melodies for 
text transcripts in a manner that is aware of the natural prosody 
of the transcript. Given a selected time span �� and �� , our goal 
is to constrain the model to generate a new melody that has one 
note for each of � syllables in the text notifcation and is at most 
�� − �� seconds in length. One simple strategy for accomplishing 
this involves frst uniformly stretching the original timings of the 
synthesized speech. From section 3.1.2, we have the estimated onset 
timestamps [�1 = 0, . . . , �� ] for each syllable in the output of the 
TTS system. To stretch these to be within the span of �� and �� , we 
defne: � � 

� + 1 �� − �� 
�̂� = �� + �� · min �, , where � = .

2 �� 

Intuitively, the frst syllable is mapped to the downbeat of the third 
measure (�̂1 = �� ), and the last syllable will occur no later than the 
end of the fourth measure (�̂� ≤ �� ). 

Figure 5: Using the syllable onsets derived from TTS, we gen-
erate a new melody that minimizes the distortion of speech 
rhythm while also considering the new melody’s musical ft 
with user music. We map each syllable to a single musical 
note. 

We leverage the observation that the prosody (here, syllable tim-
ings, as shown in Figure 5) produced by the TTS system ofers us a 
set of timings under which the text is known to sound natural. Be-
cause we’re generating new melodies anyway, we can constrain the 
notes of the generated melody to be within ±� seconds of the orig-

60inal prosody, i.e., |�time − �̂� | < � . We set � = 4·BPM , i.e., the length 
�

of one sixteenth note. This tolerance factor ensures that the syllable 
timings of the generated melody are close to the original ones while 
giving the model some fexibility to make the timings a bit more 
musically rhythmic. To accomplish this, we defne the prosody-
aware generation of melodies as sampling from a model with two 
inference-time constraints that respectively adjust �time (the note 

� 
start) and �dur. (the note duration) of melody note � with respect to 

� 
syllable onset time �̂� : 

′ (�time 

( 
�� (�� 

time | ·) if |�
� 
time − �̂� | < � 

� | ·) ∝ 
� � 0 otherwise, ( 

′ (�dur. | �time �� (�dur. | �time , ·) if |�dur. − (�̂�+1 − �̂� ) | < � 
� � � � , ·) ∝ 

� � � 0 otherwise. 

This setup does ensure that we generate precisely the same number 
of notes as syllables �, but does not ensure that generated melody 
notes are non-overlapping. Accordingly, after we’ve sampled the

ˆ = �time − �timenew melody , we postprocess it to set �dur. .M≥�� ,<�� � �+1 � 

3.3 Musical voice synthesis 
To synthesize the fnal audio, we propose a novel method of mod-
ifying TTS outputs to match the pitch and duration of a melody 
(generated or otherwise) in MIDI format. We take the same TTS 
output used to extract natural prosody onset timings in Section 3.1.2 
and use the syllable onset timings extracted to further modify the 
speech signal. After obtaining the start times of each syllable in a 
given speech audio clip, we proceed to remap the pitch and duration 
of each syllable so that they match the generated melody. We chose 
this speech-modifcation based approach over direct singing voice 
synthesis (SVS) after preliminary experiments with of-the-shelf 
SVS systems showed signifcant intelligibility issues. 
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To achieve this remapping, we use a digital signal processing 
technique known as Time-Domain Pitch Synchronous Overlap and 
Add (TD-PSOLA) [37, 38]. This technique operates by taking as 
input the original audio, a list of onsets present in the original audio, 
a corresponding list of target onsets intended for time stretching the 
audio, and a list of fundamental pitches intended for pitch shifting 
the audio. It then processes this input data to generate a modifed 
version of the audio. In this altered version, both pitch and duration 
are adjusted to align with the specifed input lists. 

Due to a hard constraint on the fundamental pitch, the resulting 
pitch-shifted speech audio may resemble the outputs of commer-
cial vocal pitch-correction software such as Melodyne [24] and 
Autotune [48]. However, our implementation difers from these 
tools with the addition of syllable segmentation and automatic 
mapping of the segmented syllables to MIDI input, which are not 
available features in existing tools. We see potential applications of 
this automated modifcation process to also be useful in the creation 
of speech-musifcation content, such as the works of songify the 
news [44] and MAD/"guichu" artists [14, 57]. 

3.4 Integration into music 
As a fnal step, we take the musical notifcation and integrate it 
into the user’s current music at the target location (Section 3.2.2). 
For target locations without vocals, we simply overlay the speech 
output at the desired temporal location and slightly decrease the 
volume of the track. Unlike conventional virtual assistants where 
the music volume is severely reduced, we only slightly attenuate 
the music volume so that the overall amplitude does not distort 
or clip when the musical notifcation is mixed in. For target lo-
cations with vocal content, we frst use Spleeter [26] to separate 
the audio into vocals and instrumental accompaniment. Then, we 
completely replace the original vocals in the target location with 
the musical notifcation, and additionally slightly attenuate the in-
strumental accompaniment. To create the fnal output, we currently 
mix components together manually in a commercial digital audio 
workstation, allowing us to refne small alignment issues between 
the retrieved symbolic music and the original audio. However, this 
refnement procedure could be automated in the future [18]. 

4 TECHNICAL EVALUATION 
We conducted a technical evaluation to investigate whether our 
approach generates intelligible voice messages. Specifcally, we 
evaluated each audio clip using an ASR (Automatic Speech Recog-
nition) model, then compared the output transcript with ground 
truth and calculated the word error rate (WER). We used OpenAI’s 
whisper (medium, English-only model) for speech recognition and 
JiWER 3.0.3 for WER calculation. We test our method and ablate 
the individual subcomponents, traditional singing voice synthesis 
with varying parameters, and conventional (non-melodic) TTS. 

4.1 Procedure 
We selected a pool of 10 diferent pop songs excerpts (e. g., Numb by 
Linkin Park; Take on Me by A-ha) each mapped to a diferent input 
text (e. g., “Project report due at 3pm today”; “New calendar invite”). 
The full list of songs and texts can be found in Appendix A.1. 

We examine intelligibility under three diferent sources of melody: 

• Original melody. The original melody and chords of pop 
songs directly retrieved from the TheoryTab database. Since 
the number of syllables in the selected measures may not 
match with input text, we truncate the melody to match the 
syllable count. 

• Generated. Melody replaced by the output of the generation 
procedure described in Section 3.2.2. 

• Generated with prosody awareness. Melody replaced by 
the output of the generation procedure described in Sec-
tion 3.2.3, i.e., where the note timings are additionally con-
strained by prosody information estimated in Section 3.1.2. 

Each melody is input to both commercial state-of-the-art SVS 
software (ACE Studio [4]), and our speech-to-melody mapping 
module to synthesize melodic voice from TTS. This resulted in a 
total of 70 audio clips, i. e., 10 audio clips × 3 generation method 
(original, generated, generated with prosody) × 2 voice synthesis 
(SVS, TTS) + 10 baseline audio clips (TTS without melody). For each 
audio clip, we compute the WER value. We process each transcript 
to remove punctuation, set every word to lowercase, and convert 
numbers to text (represent “5” as “fve”). 

4.2 Results 
All WER values are detailed in Table 1. Unmodifed TTS had a 
low WER rate at 2%. In general, samples generated using our 
speech-to-melody method (pitched TTS) exhibited signifcantly 
lower WER (mean of 10%) than clips generated using SVS (mean 
of 33%). This matches the expectations that singing voice synthe-
sis is not optimized for high intelligibility. Using prosody-aware 
generation with pitched TTS showed the lowest WER from all 
melodic voice generation methods, highlighting that it can suc-
cessfully produce intelligible voice messages. Results also indicate 
no meaningful diference in WER between original and generated 
melodies for pitched TTS. 

Through the results of the technical evaluation, we decided that 
current commercial SVS software is not sufcient to convey infor-
mation intelligibly and that directly using the original melody of the 
song will likely result in major distortions to the original prosody of 
the speech, impacting intelligibility. For all further evaluations, we 
use our best-performing method, specifcally prosody-constrained 
melody generation with pitched TTS. 

Synthesis Melody WER Music-aware 

TTS N/A 2% × 

Pitched TTS Original 13% ✓ 
Generated 15% ✓ 
+Prosody-aware 2% ✓ 

SVS Original 38% ✓ 
Generated 32% ✓ 
+Prosody-aware 30% ✓ 

Table 1: Mean WER for diferent voice synthesis and melody 
generation methods. 
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5 USER STUDY 
We conducted a study with end users to gain insights into the 
usage of our current implementation of musical voice assistants. 12 
participants experienced speech messages integrated into popular 
songs using our system, as well as a baseline of non-musical text-
to-speech outputs. We analyze users’ preferences via subjective 
ratings and qualitative comments. 

5.1 Study design 
Participants were asked to perform everyday work on their own 
personal laptops while sitting in a typical open space ofce. At the 
same time, they listened to eight songs in total, each of which con-
tained one spoken notifcation created using two separate methods. 
As a baseline, voice notifcations were delivered using Google’s 
text-to-speech system. For the musically modifed speed condition, 
we used a combination of prosody-constrained melody generation, 
Pitched TTS, and singing voice conversion, as described earlier. 
Each method was used in four songs. 

Audio clip preparation. We used the same 10 songs and text from 
the ASR evaluation (full list in Table A.1). The songs are selected 
out of the "top 50 songs" on the theoryTab database [27], and the 
texts are arbitrary to cover a range of possible speech notifcations. 
While the majority of songs on the top songs list were pop and 
dance music, we selected wide coverage of genre (e. g., nu-metal, 
retro chiptune, classical, psychedelic jazz), key (9 represented), year 
(1680 - 2017), tempo (82-169 BPM, � = 116.4, and �� = 24.16), and 
the selected section for integration (5 Verse, 3 Chorus, 2 Pre-chorus). 
We control the timing of the experiment by trimming songs (gradual 
fade out) to be around 3 minutes or less in duration. All songs were 
embedded with exactly one notifcation, at the 3rd measure of the 
specifed section of integration. Non-modifed speech is integrated 
at the same time as their counterparts but has a randomized ofset 
applied to more accurately represent notifcations not entering on 
downbeats. 

For each participant, we randomly selected 8 unique songs out 
of the pool, presented in a randomized order. Each participant 
frst listened to four songs with notifcations from one method, 
and then four songs with notifcations from the other method, 
counterbalanced by alternating which method was presented frst. 

SVC to improve naturalness of vocal timbre. After an initial pi-
lot study, a common critique was the robotic and unnatural vocal 
timbre. To address this issue, we decided to implement singing 
voice conversion (SVC) techniques to make the vocals sound more 
human. Specifcally, we employed SoftVC VITS 4.0 [47]. Our goal is 
not to mimic any particular artist, but rather to enhance the natural-
ness of the fnal output. However, due to the current limitations of 
SVC communities and model hosting platforms [22], the available 
models we found are typically based on existing music artists or 
celebrities. As a workaround, we selected a voice model trained on 
the data of a female pop artist whose songs did not overlap with 
those in our evaluation set. Moving forward, we intend to develop 
our own SVC model or an intelligible singing voice synthesis (SVS) 
model using publicly available datasets. The SVC model takes the 
pitched TTS as input and outputs a voice messages that is similar 
in melody but aims to be more natural in timbre. 

Figure 6: The ofce space used for user studies. Multiple 
conversations happen in this space with various volumes. 

5.2 Participants and apparatus 
We recruited 12 participants (5 female, 7 male, age: � = 24.33 
years, �� = 4.75), all students and staf from a local university. 
Participants listened to music on a regular basis (weekly listening: 
4 × 10+ hours, 6 × 3 - 10 hours, 2 × 1-3 hours) during activities 
such as commuting (n = 11), studying (n = 10), exercising (n = 10), 
and doing housework (n = 11). Many participants reported having 
some experience in music (8 intermediate, 2 novice, 2 professional), 
and were fuent in English (8 native/bilingual, 3 full professional, 1 
professional working). 

Participants performed the study on a desk in a busy, but not over-
whelming, ofce environment where multiple groups of workers 
were chatting at various volumes, shown in Figure 6. We selected 
this environment over a controlled, quiet space to simulate the 
amount of noise that users may experience in real-life usage. The 
audio was presented through a pair of AKG K240 Studio semi-open 
(does not block outside noise) headphones. Songs and notifcations 
were played back on a separate computer. All participants were 
compensated with a $15 Amazon gift card. 

5.3 Procedure 
After a brief introduction, participants gave informed consent and 
completed a demographic questionnaire. They then calibrated the 
volume of the headphones to a comfortable level. While performing 
their personal tasks, participants experience all eight songs with 
embedded notifcations. Whenever they encountered a notifcation, 
they were asked to transcribe the message on a separate computer 
we provided. At the end of four songs for one method, they com-
pleted a brief questionnaire. After both sets of songs, we conducted 
semi-structured interviews, gathering insights into users’ prefer-
ences, as well as the benefts and challenges of both methods. 

5.3.1 Data collection. To best simulate realistic usage, we did not 
disclose to participants how often the notifcations are played. For 
each notifcation, participants were asked to record the timestamp 
and transcribe the message. At the end of each 4 song block, we 
asked participants to subjectively rate the notifcations for notice-
ability (“I immediately noticed the message”), clarity (“I clearly 
understood the message”), harmonicity (“The message fts well 
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with the current music”), intrusiveness (“The message felt intru-
sive to my music listening experience”), enjoyment (“The message 
was presented in a delightful way”), and overall user experience 
(“Overall, my experience as a user was good”); all on a scale from 1 
(strongly disagree) to 7 (strongly agree). We analyzed the subjective 
ratings for statistically signifcant diferences using paired-samples 
sign test, performed in IBM SPSS Statistics 29. Comments from the 
semi-structured interviews were grouped and analyzed using open 
and axial coding methods. 

Figure 7: Mean ratings on a scale of 1 (strongly disagree) 
to 7 (strongly agree). Error bars refect standard errors, and 
asterisks (*) imply statistically signifcant diferences. 

5.4 Results 
5.4.1 Subjective ratings. Analyzing rating data with paired-samples 
sign tests (Figure 7), we found that while the participant transcrip-
tions were generally correct, our approach is still subjectively per-
ceived to be less clearly understood (p = 0.004). However, partici-
pants rated our approach to have a better ft with music (p = 0.006), 
less intrusive (p < 0.001), and more delightful (p = 0.021) compared 
to the baseline. Similar opinions are expressed in written feedback 
and during the interview. 

5.4.2 Notification intelligibility. Only one participant missed one 
notifcation (musical condition) across all 88 notifcations (44 per 
condition across all participants). We manually compared each par-
ticipant’s transcriptions of the message to the ground truth text, 
fnding minor errors in four messages of the musical condition and 
in two messages in the TTS version. In general, participants un-
derstood the notifcation correctly, even though the exact wording 
sometimes difered slightly from the ground truth. One particu-
lar song saw many errors such as “check report by 5 today” and 
“Project due by tonight Friday” (correct: “Project report due by 5 
today”). Participant P11 specifcally commented on this during their 
interview, stating that this song in particular uses a synthesized 
voice that merged too well with our synthesized speech. By the 
time they noticed that this was not part of the song, it was hard to 
parse out the exact frst half of the message. Aside from this rare 
case of alignment in the usage of synthesized voice, comments and 
the subjective ratings indicated that intelligibility was high for both 
methods. 

5.4.3 Qalitative feedback. In the following, we summarize the 
key fndings from the semi-structured interview. 

Music-aware notifcations. All participants could clearly distin-
guish between conventional speech messages and our modifed 
musical speech messages. Participants described the baseline condi-
tion as being similar to regular TTS, or commercial voice assistants 
like Apple Siri. Participants described our approach as matching 
the music in terms of rhythm and pitch (other terms used: beat, 
key, melody, pace, fow, etc), singing over the music, and some 
specifcally mentioned the resemblance with autotune (� = 3). 

Better blend and less interruption. Most participants found the 
baseline condition to be disruptive to their music listening experi-
ence and that the modifed version blends better with music, making 
it less intrusive (� = 11). Many participants found the musical voice 
to also be distracting as its vocal timbre did not match the style of 
the music, but still less distracting than cutting out the music (� = 7). 
Better blend, however, may also entail additional mental process-
ing to understand the information. P6 wrote in their open-ended 
response that “The messages were clear in terms of understanding, 
but it being so similar to the music required me to process what the 
message was saying for slightly longer than usual.” Both P3 and 
P11 found that understanding the message was most challenging 
in the frst half. They recommended adding space or tone before 
the notifcation to signal the start of the message more clearly. 

Open to modifcations. Participants were generally familiar with 
the music they listened to during the study due to the song popular-
ity. Contrary to our initial speculations, participants noted that they 
do not feel strongly about the modifed version having a diferent 
melody. They were open to the idea of introducing new musical 
elements into existing songs, especially if it is for the sake of receiv-
ing important notifcations (� = 9). Both P10 and P11 noted that 
they did not even realize that the melody was diferent from the 
original song since it matched so well with the music. 

Participants value intelligibility, continuity, and context-sensitivity. 
When asked what they value in music voice assistants, participants 
prioritized clarity (� = 10) and continuity (� = 8). They want clear 
and distinct notifcations that blend seamlessly with music to mini-
mize distractions. P2 wrote in their response that they "absolutely 
hate missing notifcations, but also don’t like my music being in-
terrupted by weird Text-to-Speech voices, which ruin the listening 
experience." Many also highlighted the importance of timing, that 
they want the voice messages to be concise, and to take message 
importance into account (� = 5). P1 and P2 expressed concerns 
about the system’s efectiveness when users are in more attention-
demanding tasks, indicating a need for granular adaptivity in how 
the notifcation is integrated. 

Improving vocal timbre and intelligibility. Participants suggest 
that the notifcations should more closely match the genre or the 
original artist and be overall more natural (� = 8). P10 proposed that 
the classical song presented to them during the study could beneft 
from an opera singing style, whereas the rock song presented to 
them could have a rock voice. Some participants expressed difcul-
ties understanding the modifed condition (� = 8) while the rest 
thought they were perfectly intelligible. 
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Figure 8: Lef: User is engaged in sport activities while receiving a reminder that an assignment is due later today. Center: While 
working on circuitry, the user receives a new meeting invite from his coworker. Right: Preparing cofee as part of the user’s 
morning routine, they are reminded that trash pick-up is scheduled today. 

General usage. Despite the varying opinions on the efectiveness 
of the modifed notifcation system, all participants stated that they 
would prefer to use it over the conventional approach, especially if 
improvements were made to enhance clarity and singing timbre. 
Participants generally found the concept of blending notifcations 
with music for a better listening experience promising. Some par-
ticipants openly expressed their disdain for the interruptions of 
conventional speech notifcations. They either always disable them, 
use them only when absolutely necessary, or desire to disable them 
but are unsure how to do so on their own devices (� = 5). 

6 SCENARIOS OF USAGE 
We imagine our implementation of musically embedding speech 
notifcations can improve user experience in a variety of scenarios, 
such as those depicted in Figure 8. Any situation where the user is 
listening to music can be an opportunity for musical assistants to 
intervene. 

Exercising. In a dynamic squash practice session, the user is fully 
immersed in the activity while enjoying his high-energy workout 
playlist. Because their smartphone is stored outside the court, they 
becomes oblivious to notifcations, leading them to completely 
forget about the report due later today. Without interrupting the 
pace of their beats, the musical assistant sings a friendly reminder 
to remind the user of their academic duties. 

Prototyping electronics. To better stay concentrated on their cir-
cuitry crafting task, an activity that the user treasures for the serene 
experience, the user puts on instrumental jazz with a calming fute 
solo. Without breaking the user’s focus, the musical voice assistant 
notifes them of a new meeting invitation from their coworker. The 
user stops their current work at a natural stopping point, promptly 
opens their laptop nearby, and joins the discussion. 

Morning cofee. Tired from a party last night, the user starts 
their morning with a cup of cofee and some catchy pop tunes 

to help wake them up. Still drowsy, the user completely forgets 
that trash pickup is scheduled for this morning. With the help of 
musical assistants, this important information is delivered to the 
user without any abrupt stops in music to further disorient them. 
Processing this information at a comfortable and self-determined 
pace, the user leisurely brings the trash outside and gets ready for 
another productive day. 

Airport. The user reads a book and listens to music while waiting 
to board a fight. Their noise-canceling headphones ensure a pleas-
ant listening experience even in this crowded and noisy airport 
lounge. However, noise cancellation also makes them less aware 
of their surroundings and important announcements, pressuring 
them to check for boarding activities every few minutes. With the 
help of musical assistants, the user can remain focused on their 
book, knowing that any announcements will be gently presented. 

7 DISCUSSION 
In the following, we discuss the benefts and limitations of our 
approach, and outline directions for further research. 

7.1 Intelligibility and timbre 
A key limitation of our current implementation is the intelligibility 
and unnatural timbre of the synthesized voice, which is largely 
caused by the hard pitch constraint imposed by the TD-PSOLA 
method during pitch stretching. We acknowledge that this synthe-
sis method is not ideal and hope to explore alternative approaches 
in the future. Generating singing voices that are both natural and 
intelligible is a key challenge in computer music research, and re-
searchers have suggested that training data is a key bottleneck [13]. 
Ideally, with the creation of high-quality singing voice datasets 
optimized for intelligibility, we can train SVS models that are highly 
intelligible and further improve user experience. Given improved 
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SVS models, replacing our current voice synthesis method is sim-
ple, as it is fully decoupled from the melody generation component 
in our implementation. We also hope to explore the synthesis of 
artist-specifc voices in the future, to better blend the notifcation 
as seamlessly as possible. 

7.1.1 Notification saliency. Challenges with intelligibility can arise 
if notifcations are presented too subtly. For such notifcations, 
participants reported that trying to understand the message re-
quired extra cognitive efort. One participant noted that they did 
not realize that the spoken notifcation was not part of the song 
until halfway through the notifcation, making them miss the frst 
part of the message. This fnding falls in line with our work on 
musically-integrated ringtones [52], where seamlessly integrated 
notifcations were not necessarily the most preferred, since catching 
them required extra cognitive efort and could cause false positives 
in notifcation detection. In that study, participants preferred a 
medium-urgency parameter setting that is musically integrated but 
not overly subtle. We believe that the same can be applied to our 
approach for sung notifcations. One suggestion from participants 
was to add an auditory cue preceding the message, a design already 
deployed by existing virtual assistants such as Apple Siri. This ap-
proach could improve the noticeability of seamlessly integrated 
notifcations. In the future, we plan to explore these additional de-
sign possibilities, quantify the cognitive efort associated with them, 
and compare our approach to those crafted by human musicians. 

7.2 Granularity and context-sensitivity 
One recurring comment from participants was the importance of 
keeping messages brief and appropriate for context. For example, 
notifcations should not read out entire promotional emails. We 
believe that these nuanced understandings of how and when noti-
fcations are received highlight the complementary nature of our 
work. Our approach of music integration may serve as an extra 
layer of granularity in the presentation of such messages, as op-
posed to replacing conventional notifcation delivery completely. 
Low-priority notifcations, which users wouldn’t mind missing, 
could seamlessly blend into the music. Medium-priority notifca-
tions might employ a slightly altered melody or vocal timbre to 
distinguish them. High-priority notifcations, on the other hand, 
could use conventional text-to-speech (TTS) methods with volume 
ducking for prominence. Additionally, an interesting approach to 
ensure message brevity is to leverage LLMs to paraphrase long mes-
sages into syllable counts or prosody rhythms that best matches 
the current song, while balancing for the level of detail best suited 
for diferent types of messages. 

7.3 Alternative integration methods 
Our current integration approach involves synthesizing a melodic 
voice to replace the lyrics of the original song, which may be most 
appropriate for integration with Western pop music. However, our 
approach is less relevant to broader musical traditions that may 
use entirely diferent musical tuning systems or convey language 
through diferent vocal styles and techniques. For instance, hip-
hop utilizes rapping, gospel relies on backing harmony vocals, and 
dance music incorporates pre-drop chants, among others. Similarly, 
while our current approach can be applied to any part of a song, 

we recognize the importance of selecting optimal moments for 
notifcation delivery. For example, rather than interrupting a high-
energy chorus, we aim to identify sections with less action and more 
space, potentially as a function of notifcation urgency. Exploring 
suitable modes and opportune moments for integration on a genre-
by-genre or song-by-song basis could further enhance the seamless 
integration of speech notifcations. 

7.4 Artist-in-the-loop: Authoring adaptations as 
creative process 

We believe that artists should have agency over how their work is 
presented and that more discussion about the ethical implications of 
generative audio models is needed, as highlighted by prior work [3]. 
Any commercially available music is already subject to playback 
and modifcation in contexts that may deviate from the artist’s 
vision or intent, for example through being interrupted by spoken 
notifcations, or through third-party remixing. We imagine that 
artists prefer more control over how their work is modifed. Our 
work ofers an additional dimension for this exploration. 

We believe that artists should have full control over whether and 
which modifcations are allowed. We envision an opt-in ecosystem 
of music-aware assistants where artists can elect to actively partici-
pate in shaping how their music is altered. This involvement could 
extend to both allowing alterations to their music, and contributing 
to the sound design of these adaptations. For instance, artists could 
annotate sections of their songs that are best suited for various 
types of alterations, and even compose new and modifed sections 
specifcally designed to integrate seamlessly with external elements 
such as speech notifcations. Artists may also elect to have informa-
tion presented using models trained on their own voice, as opposed 
to a generic voice which we explore here. We imagine virtual assis-
tant providers could ofer tools to artists that would allow them to 
interactively simulate the outcomes of their annotations with ran-
dom notifcation text. By engaging artists in this process in future 
work, we aim to create a collaborative environment where music 
can dynamically adapt to diverse contexts without compromising 
the artistic integrity and vision of the creators. 

Similarly, we expect the same level of agency to be desirable 
for end users. They should be able to opt in/out of any kind of 
notifcation delivery, be it integrated or not, including for individual 
songs that they may have a special attachment to. Future work 
should explore ways to enable this control, as well as ways to 
implicitly infer when a notifcation is appropriate to reduce users’ 
burden. 

8 CONCLUSION 
We present the concept of and method for musical assistants, along 
with a novel melody generation technique that optimizes voice 
messages for both intelligibility and musicality. We believe that 
integrating voice messages into users’ music is an interesting direc-
tion for personalized virtual assistants that aim to be well integrated 
in users’ tasks, and not distract them or draw attention away from 
their main tasks. Through a user study, we found that users are 
receptive to the idea of integrating speech notifcations into their 
music and values the continuity and unobtrusiveness brought by 
this technology. While our current melody generation component 
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is successful in supporting musical voice assistant interactions, the 
voice synthesis component is still lacking in terms of intelligibility 
and genre-appropriate vocal timbre, which impacted the way it was 
perceived by users. In the future, we wish to further explore the 
possibilities of improving intelligibility in SVS models and whether 
this will strongly boost user experience. As with visual notifca-
tions, we believe that the design of auditory interactions should be 
context-sensitive, personalized, and should aim at being well inte-
grated and benefcial for users. We see our work as a step towards 
expanding this design space. 
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A APPENDIX 

A.1 List of songs and notifcations 
List of notifcations used in both studies: 

(1) Project report due by 5 today 
(2) Heavy trafc reported ahead 
(3) Don’t forget, meeting at 10 PM 
(4) Missed call from Mom, call her back 
(5) Remember to take your meds 
(6) Buy groceries on your way back 
(7) Your fight to New York is boarding now 
(8) Turn left in 500 feet 
(9) New calendar invite 

Alexander Wang, David Lindlbauer, and Chris Donahue 

(10) You have 4 unread Slack messages 
List of songs used in both studies (song, artist, section of inte-

gration): 
(1) Sad machine, Porter Robinson, Verse 
(2) Numb, Linkin Park, Verse 
(3) Don’t you worry child, Swedish House Mafa, Chorus 
(4) Call me maybe, Carly Rae Jepsen, Chorus 
(5) Take on me, A-ha, Verse 
(6) The legend of Zelda main theme, Koji Kondo, Verse 
(7) Get lucky, Daft Punk, Pre-chorus 
(8) Wake me up, Avicii, Chorus 
(9) Canon in D, Johann Pachelbel, Pre-chorus 
(10) Them changes, Thundercat, Verse 
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