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Music ControlNet: Multiple Time-Varying Controls
for Music Generation
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Abstract—Text-to-music generation models are now capable of
generating high-quality music audio in broad styles. However, text
control is primarily suitable for the manipulation of global musical
attributes like genre, mood, and tempo, and is less suitable for
precise control over time-varying attributes such as the positions
of beats in time or the changing dynamics of the music. We pro-
pose Music ControlNet, a diffusion-based music generation model
that offers multiple precise, time-varying controls over generated
audio. To imbue text-to-music models with time-varying control,
we propose an approach analogous to pixel-wise control of the
image-domain ControlNet method. Specifically, we extract con-
trols from training audio yielding paired data, and fine-tune a
diffusion-based conditional generative model over audio spectro-
grams given melody, dynamics, and rhythm controls. While the
image-domain Uni-ControlNet method already allows generation
with any subset of controls, we devise a new masking strategy to
allow creators to input controls that are only partially specified
in time. We evaluate both on controls extracted from audio and
controls we expect creators to provide, demonstrating that we can
generate realistic music that corresponds to control inputs in both
settings. While few comparable music generation models exist, we
benchmark against MusicGen, a recent model that accepts text
and melody input, and show that our model generates music that
is 49% more faithful to input melodies despite having 35x fewer
parameters, training on 11x less data, and enabling two additional
forms of time-varying control. Sound examples can be found at
https://musiccontrolnet.github.io/web/.

Index Terms—Music generation, controllable generative
modeling, diffusion models.

I. INTRODUCTION

ONE of the pillars of musical expression is the communi-
cation of high-level ideas and emotions through precise

manipulation of lower-level attributes like notes, dynamics, and
rhythms. Recently, there has been an explosion of interest in
training text-to-music generative models that allow creators to
directly convert high-level intent (expressed as text) into music
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audio [1], [2], [3], [4], [5]. These models suggest an exciting
new paradigm of musical expression wherein creators can in-
stantaneously generate realistic music without the need to write
a melody, specify meter and rhythm, or orchestrate instruments.
However, while dramatically more efficient, this new paradigm
ignores more conventional forms of musical expression rooted
in the manipulation of lower-level attributes, limiting the ability
to express precise musical intent or leverage models in existing
creative workflows. There are two primary obstacles for adding
precise control to text-based music generation methods. Firstly,
relative to symbolic music representations like scores, text is a
cumbersome interface for conveying precise musical attributes
that vary over time. Verbose and mundane text descriptions may
be needed to precisely represent even the first note of a musical
score e.g., “the song starts at 80 beats per minute with a quarter
note on middle C played mezzo-forte on the saxophone”. The
second obstacle is an empirical one—text-to-music models tend
to faithfully interpret global stylistic attributes (e.g., genre and
mood) from text, but struggle to interpret text descriptions of pre-
cise musical attributes (e.g., notes or rhythms). This is perhaps
a consequence of the relative scarcity of precise descriptions in
the training data.

A potential solution to the lack of precision of natural lan-
guage is the incorporation of time-varying controls into music
generation. For example, one body of work looks at synthesizing
music audio from time-varying symbolic music representations
like MIDI [6], [7], however this approach offers a particularly
strict form of control requiring users to compose entire pieces of
music beforehand. Such approaches are more similar to typical
music composition processes and do not take full advantage of
recent text-to-music methods. Another body of work on musical
style transfer [8], [9], [10], [11], [12], [13] seeks to transform
recordings from one style (e.g., genre, musical ensemble, or
mood) to another while preserving the underlying composition
content. However, a majority of these approaches require train-
ing an individual model per style, as opposed to the flexibility
of using text to control style in a single model.

In this work, we propose Music ControlNet, a diffusion-
based music generation model that offers multiple time-varying
controls over the melody, dynamics, and rhythm of generated
audio, in addition to global text-based style control as shown
in Fig. 1. To incorporate such time-varying controls, we adapt
recent work on image generation with spatial control, namely,
ControlNet [14] and Uni-ControlNet [15] to enable musical
controls that are composable (i.e., can generate music corre-
sponding to any subset of controls) and further allow creators to

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see
https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0002-8315-0762
https://orcid.org/0009-0007-6825-6327
https://orcid.org/0000-0002-5970-8631
https://orcid.org/0000-0003-1469-7278
https://musiccontrolnet.github.io/web/
mailto:shihlunw@cs.cmu.edu
mailto:njb@ieee.org


WU et al.: MUSIC CONTROLNET: MULTIPLE TIME-VARYING CONTROLS FOR MUSIC GENERATION 2693

Fig. 1. Music ControlNet overview. Our model accepts as input global genre and mood text control, alongside any combinations of precise, time-varying melody,
dynamics, and rhythm controls. The controls can each be fully or partially specified in time, the latter of which signals the model to musically improvise. Music
that adheres to input controls is generated using a diffusion model that outputs an image-like representation of music (a Mel spectrogram), which is then rendered
as audio using a vocoder. Music ControlNet empowers creators to blend text and musical controls in their creative process with a straightforward pipeline.

only partially specify each of the controls both for convenience
and to direct our model to musically improvise in remaining
time spans of the generation. To overcome the aforementioned
scarcity of precise, ground-truth control inputs, following [5],
[16], we extract useful control signals directly from music during
training. We evaluate our method on two different categories of
control signals: (1) extracted control signals that come from ex-
ample songs, which are similar to those seen during training, and
(2) created control signals that we anticipate musician creators
might want to use in a co-creation setting via drawing or similar
user-interface tools. Our experiments show that we can generate
realistic music that accurately corresponds to control inputs in
both settings. Moreover, we compare our approach against the
melody control of the recently proposed MusicGen [5], showing
that our model is 49% more faithful to melody input, despite also
controlling dynamics and rhythm, having 35x fewer parameters,
and being trained on 11x less data.

Our contributions include:
� A general framework for augmenting text-to-music models

with composable, precise, time-varying musical controls.
� A method to enable one or more partially-specified time-

varying controls at inference.
� Effective application of our framework to melody, dy-

namics, and rhythm control using music feature extraction
algorithms together with conditional diffusion models.

� Demonstration that our model generalizes from extracted
controls seen during training to ones we expect from cre-
ators.

II. BACKGROUND: DIFFUSION AND IMAGE GENERATION

A. Diffusion Models

We use denoising diffusion probabilistic models (DDPMs)
[17], [18] as our underlying generative modeling approach for
music audio. DDPMs are a class of latent generative variable
model. A DDPM generates data x(0) ∈ X from Gaussian noise
x(M) ∈ X through a denoising Markov process that produces

intermediate latents x(M−1),x(M−2), . . . ,x(1) ∈ X , where X
is the data space. DDPMs can be formulated as the task of
modeling the joint probability distribution of the desired output
data x(0) and all intermediate latent variables, i.e.,

pθ

(
x(0), . . . ,x(M)

)
:= p

(
x(M)

) M∏
m=1

pθ

(
x(m−1)|x(m)

)
,

(1)
where θ denotes learned parameters, and p(x(M)) := N (0, I)
is a fixed noise prior, and m is the diffusion time index.

To create training examples, a forward diffusion process
q(x(0), . . . ,x(M)) is used to gradually corrupt clean data ex-
amples x(0) via a Markov chain that iteratively adds noise:

q
(
x(0), . . . ,x(M)

)
:= q

(
x(0)

) M∏
m=1

q
(
x(m)|x(m−1)

)

q
(
x(m)|x(m−1)

)
:= N

(√
1− βmx(m−1), βmI

)
, (2)

where q(x(0)) is the true data distribution, and β1, . . . , βM are
a sequence of parameters that define the noise level within the
forward diffusion process, also known as the noise schedule.

By definition of q(x(m)|x(m−1)), it follows that the noised
data x(m) at any noise level m ∈ {1, . . . ,M} can be sampled
in one step via:

x(m) :=
√
ᾱmx(0) +

√
1− ᾱmε , (3)

where ᾱm :=
∏m

m′=1(1− βm′), ε ∼ N (0, I), and M is the
total number of noise levels or steps during training. It was
shown by Ho et al. [18] that we can optimize the varia-
tional lower bound [19] of the data likelihood, i.e., pθ(x(0)),
by training a function approximator, e.g., a neural network,
fθ(x

(m),m) : X × N → X to recover the noise ε added via (3).
More specifically, fθ(x(m),m) can be trained by minimizing the
mean squared error, i.e.,

Ex(0),ε,m

[
‖ε− fθ(x

(m),m)‖22
]
. (4)
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With a trained fθ, we can transform random noise x(M)

∼ N (0, I) to a realistic data point x(0) through M denoising
iterations. To obtain high-quality generations, a large M (e.g.,
1000) is typically used. To reduce computational cost, denoising
diffusion implicit models (DDIM) [20] further proposed an
alternative formulation that allows running much fewer than M
sampling steps (e.g., 50∼100) at inference with minimal impact
on generation quality.

B. UNet Architecture for Image Diffusion Models

Our approach to music generation is rooted in methodology
developed primarily for generative modeling of images. When
applying diffusion modeling for image generation, the function
fθ is often a large UNet [18], [21]. The UNet architecture con-
sists of two halves, an encoder and a decoder, that typically input
and output image-like feature maps in the pixel space [22] or
some learned latent space [23]. The encoder progressively down-
samples the input to learn useful features at different resolution
levels, while the decoder, which has a mirroring architecture to
the encoder and accepts features from corresponding encoder
layers through skip connections, progressively upsamples the
features to eventually get back to the input dimension. For
practical use, diffusion-based image generation models are often
text-conditioned, which requires augmenting the network fθ to
accept a text description ctext ∈ T , where T is the set of all text
descriptions. This leads to the following function signature:

fθ

(
x(m),m, ctext

)
: X × N × T → X , (5)

which, via the process outlined in Section II-A, models the
desired probability distribution pθ(x

(0) | ctext). The text condi-
tion ctext is typically a sequence of embeddings from a large
language model (LLM) or one or more embeddings from a
learned embedding layer for class-conditional control. In either
case, the conditioning signals m (i.e., the diffusion time step)
and ctext are usually incorporated in the UNet hidden layers via
additive sinusoidal embeddings [18] and/or cross-attention [23].

C. Classifier-Free Guidance

To improve the flexibility of text conditioning, classifier-free
guidance (CFG) is commonly employed. CFG is used to simulta-
neously learn a conditional and unconditional generative model
together and trade-off conditioning strength, mode coverage,
and sample quality [24]. Practically speaking, during training
CFG is achieved by randomly setting conditioning information
to a special null value c∅ for a fraction of the time during
training. Then during inference, an image is generated using
conditional control inputs, unconditional control inputs, or a
linear combination of both. In most cases, a forward pass of
fθ(x

(m),m, ctext) and fθ(x
(m),m, c∅) per sampling step are

needed and subsequent weighted averaging.

D. Adding Pixel-Level Controls to Image Diffusion Models

ControlNet [14] proposed an effective method to add pixel-
level (i.e., spatial) controls to large-scale pretrained text-to-
image diffusion models. Let the diffusion model input/output

space be images, i.e., X := RW×H×D, where W,H,D are re-
spectively the width, height, and depth (for RGB images,D = 3)
of an image, we denote the set ofN pixel-level controls, indexed
via (n), as:

C :=
{
c(n) ∈ RW×H×Dn

}N

n=1
, (6)

where Dn is the depth specific to each c(n). For each condition
signal c(n), every pixel c(n)i,j ∈ RDn , where i ∈ {1, . . . ,W} and
j ∈ {1, . . . , H}, asserts an attribute on the corresponding pixel
x
(0)
i,j in the output image. For example, “x(0)

i,j is (not) part of an

edge” or “the perceptual depth of x(0)
i,j ”. Naturally, the function

to be learned, fθ, should be revised again as:

fθ

(
x(m),m, ctext,C

)
: X × N × T × C → X , (7)

where C denotes the set of all possible sets of control signals.
The updated fθ hence implicity models pθ(x(0) | ctext,C).

To promote training data efficiency, ControlNet instantiates
fθ(x

(m),m, ctext,C) by reusing the pretrained (and frozen)
text-conditioned UNet, and clones its encoder half to form
an adaptor branch to incorporate pixel-level control through
finetuning. To gracefully bring in the information from pixel-
level control, it enters the adaptor branch through a convolution
layer that is initialized to zeros (i.e., a zero convolution layer).
Outputs from layers of the adaptor branch are then fed back to
the corresponding layers of the frozen pretrained decoder, also
through zero convolution layers, to influence the final output.
Uni-ControlNet [15] then augmented the adaptor branch such
that one model can be finetuned to accept multiple pixel-level
controls via a single adaptor branch without the need to spec-
ify all controls at once whereas ControlNet requires separate
adaptor branches per control.

III. MUSIC CONTROLNET

Our Music ControlNet framework builds on the methodol-
ogy of text-to-image generation with pixel-level controls, i.e.,
ControlNet [14] and Uni-ControlNet [15], and extends it for
text-to-audio generation with time-varying controls. We formu-
late our controllable audio generation task, explain the links
and differences to ControlNet, and detail our essential model
architecture and training modifications below.

A. Problem Formulation

Our overall goal is to learn a conditional generative model
p(w | ctext,C) over audio waveforms w, given a global (i.e.,
time-independent) text control ctext, and a set of time-varying
controls C. Due to our dataset, we limit ctext to musical genre
and moods tags. Waveforms w are vectors in RTfs , where T
is the length of audio in seconds and fs is the sampling rate
(i.e., number of samples per second). As fs is large (typically
between 16 kHz and 48 kHz), it is empirically difficult to
directly model p(w | ·). Hence, we adopt a common hierarchical
approach of using spectrograms as an intermediary. A spectro-
gram s ∈ RTfk×B×D is an image-like representation for audio
signals, obtained through Fourier Transform on w, where fk is
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the frame rate (usually 50∼100 per second), B is the number
of frequency bins, and D = 1 for mono-channel audio. With
s as the intermediary, we instead model the joint distribution
p(w, s | ctext,C), which can be factorized as:

p(w, s | ctext,C) = p(w | s, ctext,C) · p(s | ctext,C) (8)

:= pφ(w | s) · pθ(s | ctext,C) , (9)

where φ and θ are sets of parameters to be learned. Note that this
factorization assumes conditional independence between wave-
form w and all control signals ctext and C given spectrogram s,
which is reasonable if the time-varying controls in C vary at a
rate no faster than fk by nature.

In our work, we focus on modeling spectrograms given
controls, i.e., pθ(s | ctext,C), and directly apply the DiffWave
vocoder [25] to model pφ(w | s). Following the text-to-image
ControlNet [14] model, we leverage diffusion models [18] to
learn pθ(s | ctext,C). If we set the input space X := RTfk×B×D,
and the desired outputx(0) := s, we can instantiate a neural net-
work fθ having an identical function signature to (7). However,
we find two key differences between pixel controls for images
and time-varying controls for music.

First, the first two dimensions in a spectrogram s have dif-
ferent semantic meanings, one being time and the other being
frequency, as opposed to both being spatial in an image. Second,
the time-varying controls useful to creators are closely coupled
with time, but could have a much more relaxed relationship
with frequency such that the second dimension of (6) cannot be
restricted to B. For example, an intuitive control over ‘musical
dynamics’ may involve defining volume over time, not over
frequency. A high dynamics value for one frame can mean a
number of different profiles over the B frequency bins for the
corresponding spectrogram frame, e.g., a powerful bass playing
a single pitch, or a rich harmony of multiple pitches, which the
model has freedom to decide. Therefore, we relax the definition
for the set of N control signals to become:

C :=
{
c(n) ∈ RTfk×Bn×Dn

}N

n=1
, (10)

where Bn is the number of classes specific to each control
c(n), which is not bound to B. With this updated definition,
the correspondence between control signals C and the output
spectrogram x naturally becomes frame-wise. For example,
suppose c(n) represents dynamics control, a frame for the con-
trol c(n)t ∈ R1×1, where t ∈ {1, . . . ,Tfk}, then describes “the
musical dynamics (intensity) of the spectrogram frame st”.

Finally, we consider time-varying controls c(n) that can be di-
rectly extracted from spectrograms. Given that spectrograms are
also computed directly from waveforms, only pairs of (w, ctext)
are necessary for training, causing no extra annotation overhead.
Nevertheless, we note that our formulation supports manually
annotated time-varying controls as well.

B. Adding Time-Varying Controls to Diffusion Models

We propose a strategy to learn the mapping between input
controls, vectors of size Bn per time frame, to frequency bins,
i.e., B in the output spectrograms, marking an update from

ControlNet [14]. As mentioned in Section II-D, ControlNet
clones the encoder half of the pretrained UNet for text-to-
image generation as the adaptor branch, which uses newly
attached zero convolution layers to enable pixel-level control.
Let f̃ (l)(x(m,l−1),m, ctext,C) be the lth block of the adaptor
branch wherẽ denotes the adaptor (not the main UNet),x(m,l−1)

contain the features of the noised image after l − 1 blocks, and
ctext, C denote the text and pixel-level controls, respectively.
Considering the case C := {c(1)} which is consistent with past
work [14], the pixel-level control is incorporated via:

f̃ (l)
(
x(m,l−1),m, ctext,C

)
:=

Zout

(
f (l)

(
x(m,l−1) + Zin

(
c(1)

)
,m, ctext

))
, (11)

where Zin and Zout are the newly attached zero convolution
layers, and f (l) is initialized from the lth encoder block of the
pretrained text-conditioned UNet.

In Music ControlNet, we revamp the control process for
multiple time-varying controls to be:

f̃ (l)
(
x(m,l−1),m, ctext,C

)
:=

Zout

(
f (l)

(
x(m,l−1) + Zin

(
M(n)(c(n))

)
,m, ctext

))
, (12)

where M(n) is an additional 1-hidden-layer MLP that trans-
forms Bn for the nth control signal, the number of classes
for the control c(n) following (10), to match the number of
frequency bins B, and simultaneously learns the relationship
between control classes and frequency bins. In cases with mul-
tiple controls, i.e., C = {c(n)}Nn=1, each control is processed
with its individual MLP, i.e., M(n), and then concatenated
along the depth dimension, i.e., Dn, before entering the shared
zero-convolution layer Zin. For the case of one control signal
and no MLP adaptor, (12) reduces to (11) and past work.

C. Masking Strategy to Enable Partially-Specified Controls

To give creators the freedom to input any subset of the N
controls, Uni-ControlNet [15] proposed a CFG-like training
strategy to drop out each of the control signals c(n) randomly
during training. We follow the same strategy and further assign
a higher probability to keep or drop all controls [15] as we found
that this leads to perceptually better generations. In more detail,
we let the index set of control signals be I = {1, . . . , N}. At
each training step, we then select a subset I′ ⊆ I that will be
set to zero or dropped. We then directly apply the index subset
to the control signals via:

c(n) :=

{
0Tfk×Bn×Dn

∀n ∈ I′

c(n) ∀n ∈ I \ I′ .
(13)

Doing so induces fθ(x(m),m, ctext,C) to learn the correspon-
dence between any subset of controls and the outputs.

In Music ControlNet, we further desire a model that allows the
given subset of controls to be partially-specified in time. There-
fore, we devise a new scheme that partially masks active controls
(i.e., those indexed by I \ I′). Specifically, we randomly sample
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Fig. 2. Two masking schemes we randomly choose to apply during training
that allow creators to input any subset of the time-varying controls, fully or
partially specified in time, at inference. Each row indicates a unique masking
instantiation over the set of control signals C := {c(n)}Nn=1 (N = 3 as illus-
trated here). Masked control signals are colored in gray. Within each scheme, we
show the melody (left), dynamics (middle), and rhythm (right) control signals.

a pair (tn,a, tn,b) ∈ {1, . . . ,Tfk}2, where tn,a < tn,b, for each
of the active controls, and mask them as:

c
(n)
t :=

{
0Bn×Dn

if t ∈ [tn,a, tn,b]

c
(n)
t otherwise.

∀n ∈ I \ I′ (14)

Fig. 2 displays example instantiations of the two masking
schemes detailed above. At each training step, after selecting
I′ (i.e., determining the dropped controls) we choose one of the
two masking schemes uniformly at random, and then sample
the timestamp pairs (i.e., (tn,a, tn,b)’s) when needed. In this
way, we further employ a CFG-like training strategy to enable
partially-specified controls in a unified manner.

D. Musical Control Signals

We propose three control signals, i.e., C, we believe are
useful for creators including melody, dynamics, and rhythm.
Furthermore, we define two methods for obtaining control sig-
nals: extracted controls and created controls. Extracted controls
are signals extracted from an input audio example or the tar-
get spectrogram, i.e, s ∈ RTfk×B×D from a feature extraction
function, enabling style transfer applications by example, and
requiring no human annotation. Created controls are signals
directly annotated, modified, or otherwise created from a music
creator at inference-time to compose their music from scratch.
We train our method on extracted controls and run inference on
either extracted or created controls. Below, we introduce how
our controls are obtained, what connections they have to music,
and how creators can form created controls at inference-time.
Readers may refer to Fig. 3 for how the control signals may be
visually presented to creators.
� Melody (cmel ∈ RTfk×12×1): Following [5], we adopt

a variation of the chromagram [26] to encode the most
prominent musical tone over time. To do so, we compute a
linear spectrogram and then rearrange the energy across the
B frequency bins into 12 pitch classes (or semitones, i.e., C,
C-sharp,..., B-flat, B) in a frame-wise manner, i.e., indepen-
dently for each t ∈ {1, . . . ,Tfk}, via the Librosa Chroma
function [27]. To form a better proxy for melody from the
raw chromagram, only the most prominent pitch class is
preserved by applying an argmax operation to make the
chromagram frame-wise one-hot. Additionally, we apply a
Biquadratic high-pass filter [28] with a cut-off at Middle C,
or 261.2 Hz) before chromagram computation to avoid bass

dominance, i.e., the resulting one-hot chromagram encodes
the bass notes, rather than the desired melody notes. At
test time, the melody control can be created by recording
a simple melody, or simply drawing the pitch contour. A
desirable model should be able to turn the simple created
melody control into rich, high-quality multitrack music.

� Dynamics (cdyn ∈ RTfk×1×1): The dynamics control is
obtained by summing the energy across frequency bins
per time frame of a linear spectrogram, and mapping the
resulting values to the decibel (dB) scale, which is closely
linked to loudness perceived by humans [27]. To mitigate
rapid fluctuations of the raw dynamic values due to note
or percussion onsets, and also to bring our dynamics con-
trol closer to the perceived musical intensity, we apply a
smoothing filter with one second context window over the
frame-wise values (i.e., a Savitzky-Golay filter [29]). The
dynamics control not only characterizes the loudness of
notes, but also is strongly correlated with important musical
intensity-related attributes like instrumentation, harmonic
texture, and rhythmic density thanks to the natural corre-
lation between loudness and the aforementioned attributes
in human-composed music. During inference, creators can
simply draw a line/curve of how they want the musical
intensity to vary over time as the created dynamics control.

� Rhythm (crhy ∈ RTfk×2×1): For rhythm control, we
employ an in-house implementation of an RNN-based
beat detector [30] that is trained on a different internal
dataset to predict whether a frame is situated on a beat, a
downbeat, or neither. We then use the frame-wise beat and
downbeat probabilities for control, resulting in 2 classes per
frame. The advantages of our time-varying beat/downbeat
control over just inputting a global tempo (i.e, beats per
minute) are: (i) it allows creators to precisely synchronize
beats/downbeats with, for example, video scene cuts or
other moments of interest in the content to be paired with
generated music. (ii) it encodes some nuanced information
of rhythmic feeling, e.g., whether the music sounds more
harmonic or rhythmic, and whether the rhythmic pattern
is clear/simple, or complex, on which experienced music
creators may want to influence in the generative process.
At inference, the rhythm control can be created by time-
stretching the beat/downbeat probability curves extracted
from existing songs to match the desired tempo. Also,
creators can obtain precise beat/downbeat timestamps by
feeding the beat/downbeat curves to a Hidden Markov
Model (HMM) based post-filter [31], [32], and use the
timestamps to shift the curves along the time axis for
synchronization purposes mentioned above. We also tried
to manually draw spiked curves as the created rhythm
control, but the performance of this was worse than our
final hand-drawn (i.e., created) dynamics control.

IV. EXPERIMENTAL SETUP

A. Datasets

We train our models on a dataset of ≈1800 hours of licensed
instrumental music with genre and mood tags. Our dataset does
not have free-form text description, so we use class-conditional



WU et al.: MUSIC CONTROLNET: MULTIPLE TIME-VARYING CONTROLS FOR MUSIC GENERATION 2697

Fig. 3. Examples of Music ControlNet generations given single time-varying controls. Our model faithfully follows all controls despite their non-obvious
relationship with the spectrograms. Controls given by creators may be, e.g., simple melodies, drawn dynamics curves, and time-shifted/stretched rhythm templates
as shown here. (Colors in rhythm control represent beat/downbeat probabilities. Dashed lines in the creator rhythm control are beat/downbeat timestamps that can
be used to sync beats as desired.)

text control of global musical style, as done in JukeBox [1]. For
evaluation, we use data from four sources:

1) an in-domain test set with 2 K songs held out from our
dataset,

2) the MusicCaps dataset [2] with around 5 K 10-second
clips associated with free-form text description

3) the MusicCaps+ChatGPT dataset where we use Chat-
GPT [33] to convert the free-form text in MusicCaps to
mood and genre tags that match our dataset via the prompt
“For the lines of text below, convert each to one of the
following [genres or moods] and only output the [genre
or mood] per line (no bullets): [MusicCaps description]”,
and

4) a Created Controls dataset of control signals that music
creators can realistically give via manual annotation or
similar.

B. Created Controls Dataset Details

For our Created Controls dataset, we created example
melodies, dynamics annotations, and rhythm presets that we
envision creators would use during music co-creation via:
� Melody: We record our piano play of 10 well-known

classical public domain music melodies (30 seconds long
each) composed by Bach, Vivaldi, Mozart, Beethoven,
Schubert, Mendelssohn, Bizet, and Tchaikovsky, and crop
two 6-second chunks, minimizing repeated musical content
as possible, resulting in a 20-example melody controls.

� Dynamics: To simulate a creator-drawn dynamics
curves, we draw out 6-second long dynamics curves
as {Linear,Tanh,Cosine} functions, either vertically
flipped or not, with scaled dynamics ranges of
{±6,±9,±12,±15} decibels from the mean value of all
training examples. This leads to 3 × 2× 4 = 24 created
dynamics controls.

� Rhythm: We create “rhythm presets” via selecting
four songs from our in-domain test set with different

rhythmic strengths and feelings, extract their rhythm con-
trol signals, and time-stretch them using PyTorch inter-
polation with factors {0.8, 0.9, 1.0, 1.1, 1.2} to create 20
rhythm controls.

Each set of created controls is then cross-producted with 10
genres × 10 moods to form the final dataset of 2.0 K, 2.4 K and
2.0 K samples. Our created controls are distinct from controls
that are directly extracted from mixture data during training.

C. Model, Training, and Inference Specifics

For our spectrogram generation model pθ(s | ctext,C), we use
a convolutional UNet [21] with 5 2D-convolution ResNet [34]
blocks with [64, 64, 128, 128, 256] feature channels per block
with a stride of 2 in between downsampling blocks. The UNet
inputs Mel-scaled [35] spectrograms clipped to a dynamic range
of 160 dB and scaled to [−1, 1] computed from 22.05 kHz
audio with a hop size of 256 (i.e., frame rate fk ≈ 86 Hz), a
window size of 2048, and 160 Mel bins. For our genre and mood
global style control ctext, we use learnable class-conditional
embeddings with dimension of 256 that are injected into the
inner two ResNet blocks of the U-Net via cross-attention. We
use a cosine noise schedule with 1000 diffusion steps m that are
injected via sinusoidal embeddings with a learnable linear trans-
formation summed directly with U-Net features in each block.
To approximately match the output dimensions of ControlNet
(512 × 512× 3), we set our output time dimension to 512 or
≈6 seconds, yielding a 512 × 160× 1 output dimension. We
use an L1 training objective between predicted and actual added
noise, an Adam optimizer with learning rate to 10−5 with linear
warm-up and cosine decay. Due to limited data and efficiency
considerations, we instantiate a relatively small model of 41
million parameters and pretrain with distributed data parallel
for 5 days on 32 A100 GPUs with a batch size of 24 per GPU.

Given our pretrained global style control model, we finetune
on time-varying melody, dynamics, and rhythm controls con-
trols. The time-varying controls enter the pretrained U-Net via
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an adaptor branch as discussed above. We use the same loss and
optimizer used for pretraining and finetune until convergence
for 3 days with 8 A100 GPUs. At inference, we use 100-step
DDIM [20] sampling, and CFG [24] on global style control with
a scale of 4 on the global style control only.

For our spectrogram-to-audio vocoder pφ(w | s), we train
a diffusion-based DiffWave [25] vocoder for our main results
(code available) and use the MusicHiFi vocoder [36] for our
demo video. We leverage an open-source package [37], and use
our main training dataset, an Adam optimizer with learning rate
of 10−5, noise prediction L1 loss, a 50-step linear noise schedule,
hopsize of 256 samples, sampling rate of 22050 Hz, batch size
of 50 per GPU and train on 8 GPUs for 10 days. For inference,
we use DDIM-like sampling [25] with six steps.

D. Evaluation Metrics

We evaluate time-varying controllability, adherence to global
text control, and audio realism via the metrics below.
� Melody accuracy examines whether the frame-wise pitch

classes (C, C#,..., B; 12 in total) match between the input
melody control and that extracted from the generation.

� Dynamics correlation is the Pearson’s correlation be-
tween the frame-wise input dynamics values to the values
computed from the generation. We compute two types of
correlation, which we call micro and macro correlation
respectively. Micro computes r’s separately for each gen-
eration, while macro collects input/generation dynamics
values from all generations, and then computes a single r.
The micro correlation examines whether relative dynamics
control values within a generation is respected, while the
macro one checks the same property across many genera-
tions.

� Rhythm F1 follows the standard evaluation methodology
for beat/downbeat detection [38], [39]. It quantifies the
alignment between the beat/downbeat timestamps esti-
mated from the input rhythm control, and those from the
generation. The timestamps are estimated by applying an
HMM post-filter [31] on the frame-wise (down)beat prob-
abilities (i.e., the rhythm control signal). Following [39],
a pair of input and generated (down)beat timestamps are
considered aligned if they differ by <70 milliseconds.

� CLAP score [40], [41] evaluate text control adherence via
computing the pair-wise cosine similarity of text and audio
embeddings extracted from CLAP. CLAP is a dual-encoder
foundation model where the encoders respectively receive
a text input and an audio input. The text and audio embed-
ding spaces are learned via a contrastive objective [42].
To obtain the embeddings for evaluation, we feed the
generated audio to the CLAP audio encoder, and set the
CLAP text encoder input to “An audio of [mood] [genre]
music” to accommodate our tag-based control on global
musical style.

� FAD is the Fréchet distance between the distribution of
embeddings from a set of reference audios and that from
generated audios [43]. It measures ‘how realistic the set
of generated audios are’, taking both quality and diversity

into account. To ensure comparable FAD scores, we utilize
the Google Research FAD package [43], which employs a
VGGish [44] model trained on audio classification [45] to
extract embeddings from audios. Unless otherwise speci-
fied, the reference audios for FAD are our in-domain test
dataset.

V. EVALUATION AND DISCUSSION

We conduct a comprehensive evaluation of our proposed Mu-
sic ControlNet framework. Specifically, we perform quantitative
studies of (i) single vs. multiple time-varying extracted controls,
(ii) extracted controls vs. created controls, (iii) fully vs. partially-
specified created controls, (iv) extrapolating generation duration
beyond the training duration (i.e., 6 seconds), and (v) bench-
marking with the 1.5 billion-parameter MusicGen model with
melody control. In all experiments, a single fine-tuned model
is used with different inference configurations. The duration of
generation is 12 or 24 seconds in experiment (iv), 10 seconds
in experiment (v) so we can be consistent with MusicCaps [2]
benchmark, and 6 seconds in all other experiments. We leverage
the fully convolutional nature of our UNet backbone to generate
music that is longer than what is seen during training. We con-
clude with an in-depth qualitative analysis of created generation
examples.

A. Single & Multiple Extracted Controls

We evaluate generation performance by applying different
combinations of controls at inference time, using single or mul-
tiple control signals extracted from our in-domain test set. The
results are shown in Table I. First, we compare generations using
global style only (i.e., genre and mood tags) and those with single
time-varying controls (rows 2∼4). When the corresponding
controls are enforced, we observe much higher melody accuracy,
dynamics correlations, and rhythm F1s, which indicate that
our proposed control injection mechanism (see Section III-B)
affords effective time-varying controllability. Interestingly, we
find in rows 3 and 4 that the dynamics and rhythm metrics are
higher compared to using global style control only (1st row) even
when the corresponding controls are excluded. We hypothesize
that this is due to that our rhythm and dynamics controls have
natural correlation.

Second, focusing on generations with multiple controls (last 4
rows in Table I), we find the time-varying controllability metrics
to remain largely the same compared to single control scenarios.
This shows that our model learns to simultaneously respond to
multiple controls well despite the added complexity. However, as
more time-varying controls are enforced, text control adherence
(CLAP score) degrades mildly, while overall audio realisticness
(FAD) is not negatively impacted.

B. From Extracted to Created Controls

To empower creators to generate music with their own ideas,
we evaluate the single-control generations using created con-
trols from our Created Controls dataset. The comparison with
extracted controls are displayed in Table II. We notice several
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TABLE I
PERFORMANCE OF SINGLE VS. MULTIPLE TIME-VARYING CONTROLS USING CONTROLS EXTRACTED FROM OUR IN-DOMAIN TEST SET

TABLE II
EVALUATION ON CONTROLS CREATED BY CREATORS THAT ARE MORE SIMPLE THAN THE EXTRACTED CONTROLS SEEN BY OUR MODEL DURING TRAINING

TABLE III
EVALUATION ON CONTROLS PARTIALLY SPECIFIED IN TIME, WHICH LIFT THE REQUIREMENT FOR CREATORS TO ALWAYS INPUT FULL CONTROLS

interesting insights. First and perhaps unexpectedly, we find
that across all three control signals, all time-varying control-
lability metrics actually improve when using created controls.
This demonstrates our model’s generalizability to out-of-domain
control inputs.

Second, we find that global style control adherence (CLAP
score) is largely unaffected, while FAD appears to degrade. The
degradation in FAD is multifaceted. On the one hand, the created
controls, naturally creates some music that is distributionally
different from the in-domain test set. Hence, we can not expect
the desirable generations to score a low FAD. On the other hand,
perceptually, we do find the generations with created controls are
more often less musically interesting. We find this true particu-
larly for created melody and dynamics controls, where the model
may copy the melody with a single instrument on a constant
background chord, or match dynamics using monotonous bass
or sound effects. However, in practice, we believe this is not an
issue as creators can ask for a batch of generations and select
the best one.

C. From Fully- to Partially-Specified Controls

We evaluate generation quality using partially-specified, cre-
ated control signals (made possible by the masking scheme in
Section III-C) and compare fully-specified created controls in
Table III. For partially-specified cases, for each sample, we spec-
ify the control for a random 1.0 to 4.5-second span out of the full
6-second duration. The melody, dynamics, rhythm metrics are
computed only within the partially-specified spans, while CLAP
and FAD still take the full generated audio as input. Overall,
we find that partial control somewhat degrades time-varying
controllability compared to the full created control scenarios,
but it remains strong and mostly better than using full extracted
controls (cf. rows marked by Extracted in Table II). Global style
control adherence (CLAP) is unaffected. Overall quality (FAD)
improves, suggesting that the less amount of controls induces
the generations to match the training distribution better. We also
found that the coexistence of controlled and uncontrolled spans
did not lead to pronounced incoherence issues.
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TABLE IV
EVALUATION OF GENERATIONS OF LONGER DURATIONS THAN THAT SEEN AT

TRAINING (I.E., 6 SEC), USING CREATED MELODIES

D. Extrapolating Duration of Generation

The 6-second duration of our model can be restrictive for some
real-world use cases. Therefore, we capitalize on the inherent
length-extrapolation ability of our fully convolutional model
backbone, and experiment with 12 and 24 s-long generations
(i.e., 2x and 4x the duration at training) using created melody
controls. The evaluation results are in Table IV. We observe that
both time-varying controllability and text control adherence are
retained, but the overall audio realisticness, measured by FAD,
somewhat degrades. We verify this degradation via listening and
note that the background noise level noticeably increases as we
extrapolate duration.

E. Benchmarking With MusicGen on Melody Control

We compare our model trained with melody, dynamics, and
rhythm controls to the 1.5B-parameter MusicGen [5] model
trained with melody and free-form text control. We use the
MusicGen model in three scenarios:

1) text-only generation, where we do not pass in melodies,
2) full melody control, where we pass in melodies that are

as long as generation length, and
3) 1/2 prompt melody control, where the melodies passed in

are half length.
For our model, we achieve these scenarios via omitted,

partially-specified, or full melody control.
As MusicGen support free-form text control and arbitrary

generated audio length, we use both the MusicCaps and Mu-
sicCaps+ChatGPT datasets. Both datasets contains the same
audio, but the MusicCaps+ChatGPT dataset has the text de-
scriptions converted into genre & mood tags by ChatGPT. The
ChatGPT-converted tags are then used in two ways: as the global
style input to our model, and as text input when computing CLAP
scores. That is, we have two versions of CLAP when comparing
our model to MusicGen, namely, CLAPtext, which measures
CLAP with (original free text, generation audio) tuples, and
CLAPtag (i.e., the CLAP metric used in previous experiments),
which only allows converted tags as text input to both MusicGen
(written as text, e.g., “An audio of happy jazz music”) and our
model, and measures CLAP with (converted tags, generation
audio) tuples. We also compute two versions of FAD scores, one
using MusicCaps as the reference set (i.e., FADMCaps) and the
other using our in-domain test set as the reference (i.e., FADOurs).
We generate 10-second long outputs to be consistent with the
MusicCaps dataset and evaluation protocol.

We consider both extracted and created melody controls in
this comparison. As shown in Table V, we find our proposed
work responds more precisely to the melody control, particularly

on created melodies, where our model is as much as 49%
relatively more faithful to the control. In terms of text control
adherence, when the text input is restricted to the converted
mood & genre tags (i.e., the CLAPtag metric), our model is
comparable to MusicGen. On overall audio realisticness, as our
model is much smaller than MusicGen, and trained on a much
more restricted domain of data, it is unsurprising that it scores
a worse FAD when using MusicCaps recordings. Moreover, we
note that many examples in the MusicCaps datast are, in fact,
low-quality audio recordings and/or contain vocals which our
model never sees during training, which may render FADMCaps

biased against our model. We also note when the reference set is
our in-domain test set audios (i.e., FADours), we are competitive
to or somewhat better than MusicGen. Finally, we note Music-
Gen can generate unlimited length music via an auto-regressive
architecture, while our approach cannot.

F. Qualitative Analysis of Generations

In Fig. 3, we show generation outputs with each of the
proposed controls, i.e., melody, dynamics, or rhythm, either
extracted or created. Concentrating first on the extracted controls
(Fig. 3, left half), all of the three control signals are closely
followed by our model even with their different dimensions and
relationships w.r.t. the spectrogram. Moving on to the created
controls (Fig. 3, right half), the controls are almost perfectly
reflected despite some of them (i.e., melody & dynamics) being
out-of-domain from training data. Moreover, our approach is
able to wield musical creativity even though the created controls
are much simpler than extracted ones. For example, visible from
the output spectrograms given melody or dynamics controls,
our model generates music with varying texture and rhythmic
patterns, rather than simply replicating the monophonic melody,
or changing the volume of a single note to match the increasing
dynamics.

Fig. 4 displays generations using multiple created controls,
specifically, with a) full melody & dynamics controls simultane-
ously enforced, and b) all three controls with partially-specified
spans, which simulate the creator intent: “I want the music to
start with my signature melody, and have it intensifying at the
end with beats synchronized to my video scene cuts to engage
my audience.” Example a) verifies the composability of created
controls (as opposed to extracted ones, which has been examined
in Table I) as both controls are respected by the model. Example
b) demonstrates effective control even when controls signals are
partially specified, and the capability to generate cohesive music
(i.e., the output spectrogram contains no visible borders) when
both controlled and uncontrolled spans are present.

VI. RELATED WORK

A. Text-to-Music Generation

Music ControlNet builds on a recent body of work on text-to-
music, where the goal is to generate music audio conditioned on
text descriptions or categories [1], [2], [3], [4], [46], [47]. This
line of research is bifurcated into two broad methodological
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TABLE V
COMPARISON TO MUSICGEN [5] ON THE MUSICCAPS DATASET [2]

Fig. 4. Music ControlNet generations with multiple and/or partially-specified controls given by creators. All controls are honored when enforced, demonstrating
the composability of our controls. In uncontrolled segments, the generations exhibits consistent style and musical creativity.

branches which build on advances in natural language process-
ing and computer vision respectively:

1) using LLMs to model tokens from learned audio codecs
as proposed in [48], [49], and

2) using (latent) diffusion to model image-like spectrograms.
We explore diffusion to leverage strong inductive biases
developed for spatial control.

B. Time-Varying Controls for Music Generation

Our approach is related to generating music audio from
time-varying control. A contemporaneous work is [50], which
focuses on a similar goal to ours, but is built on pretrained
large language models (LLMs) instead of diffusion models.
Work on style transfer includes methods to convert musical
recordings in one style to another while preserving underlying
symbolic music [8], [9], [10], [11]. Other work explores directly
synthesizing symbolic music (e.g., MIDI) into audio [6], [7].
Both approaches require training individual models per style
rather than leveraging text control for style, and needs com-
plete musical inputs rather than simpler controls we explore
here. More recently, [16], [51], [52] generate music in broad

styles with time-varying control but target tasks with stronger
conditions like musical accompaniment or variation generation,
which are different applications than ours. Another body of
research [53], [54], [55], [56] explores time-varying controls for
symbolic-domain music generation, i.e., modeling sheet music
or MIDI events. The controls considered in these works are of
coarser time scale, e.g., at the measure or phrase level, while our
approach offers precise control down to the frame level.

C. Unconditional Music Generation

Our work on controllable music audio generation builds on
earlier work on unconditional generative modeling of audio.
Early approaches explored directly modeling audio waveforms
[57], [58], [59]. More recent work [48], [49], [60], [61] favors
hierarchical approaches like those we consider there.

VII. CONCLUSION

We proposed Music ControlNet, a framework that enables
creators to harness music generation with precise, multiple time-
varying controls. We demonstrate our framework via melody,
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dynamics, and rhythm control signals, which are all basic ele-
ments in music and complement with each other well. We find
that our framework and control signals not only enables any com-
bination of controls, fully- or partially-specified in time, but also
generalizes well to controls we envision creators would employ.

Our work paves a number of promising avenues for future
research. First, beyond melody, dynamics, and rhythm con-
trols, several additional musical features could be employed
such as chord estimation for harmony control, multi-track pitch
transcription, instrument classification, or even more abstract
controls like emotion and tension. Second, as the set of musical
controls becomes large, generating control presets based on
text, speech, or video inputs could make controllable music
generation systems more approachable to a wide range of con-
tent creators. Last but not least, addressing the domain gap
between extracted and created controls via, e.g., adversarial
approaches [62], could further enhance the musical quality of
generations under created controls.

VIII. ETHICS STATEMENT

Music generation is poised to upend longstanding norms
around how music is created and by whom. On the one hand,
this presents an opportunity to increase the accessibility of
musical expression, but on the other hand, existing musicians
may be forced to compete against generated music. While we
acknowledge our work carries some risk, we sharply focus on
improving control methods so as to directly offer musicians
more creative agency during the generation process. Other po-
tential risks surround the inclusion of singing voice, accidental
imitation of artists without their consent, and other unforeseen
ethical issues, so we use licensed instrumental music for training
and melodies extracted from our training data or public domain
melodies we recorded ourselves for inference. For evaluation,
we do use the MusicCaps dataset [2] as it is standard in recent
text-to-music generation literature.
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